Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Human cardiac explant-conditioned medium: soluble factors and cardiomyogenic effect on mesenchymal stem cells.

The use of conditioned medium (CM) from human cardiac explants (HCEs) as a potential source of paracrine factors for adult stem cell signaling has never been evaluated. We hypothesized that HCEs might provide a source of soluble factors triggering the differentiation of mesenchymal stem cells (MSCs) into cardiomyocyte-like cells. By using two-dimensional electrophoresis (2-DE) gels/mass spectrometry and antibody macroarray assays, we found that HCEs release macromolecules, including cytokines, growth factors and myocardial and metabolism-related proteins into the culture medium. We identified a total of 20 proteins in the HCE-CM. However, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 2-DE, these 20 proteins account for only a fraction of the total number of proteins present in the HCE-CM. We also found that CM increased the proliferation of bone marrow-derived-MSCs (BM-MSCs) in vitro. Unlike the other effects, this effect was most evident after 48 h of culture. Moreover, we examined the effect of HCE-CM on levels of mRNA and protein for specific cardiac markers. We showed that a surprisingly big fraction of BM-MSCs (3.4-5.0%) treated in vitro with HCE-CM became elongated and began to express cardiac markers, consistent with their possible differentiation into cardiomyocyte-like cells. Our in vitro model may be useful not only per se, but also for studies of the mechanisms of action of soluble factors involved in cell differentiation, paving the way for possible new protein-based treatments in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app