Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Selection and optimization of MCF-7 cell line for screening selective inhibitors of 11beta-hydroxysteroid dehydrogenase 2.

An 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) produces glucocorticoid (GC) from 11-keto metabolite, and its modulation has been suggested as a novel approach to treat metabolic diseases. In contrast, type 2 isozyme 11beta-HSD2 is involved in the inactivation of glucocorticoids (GCs), protecting the non-selective mineralocorticoid receptor (MR) from GCs in kidney. Therefore, when 11beta-HSD1 inhibitors are pursued to treat the metabolic syndrome, preferential selectivity of inhibitors for type 1 over type 2 isozyme is rather important than inhibitory potency. Primarily, to search for cell lines with 11beta-HSD2 activity, we investigated the expression profiles of enzymes or receptors relevant to GC metabolism in breast, colon, and bone-derived cell lines. We demonstrated that MCF-7 cells had high expression for 11beta-HSD2, but not for 11beta-HSD1 with its cognate receptor. Next, for the determination of enzyme activity indirectly, we adopted homogeneous time resolved fluorescence (HTRF) cortisol assay. Obviously, the feasibility of HTRF to cellular 11beta-HSD2 was corroborated by constructing inhibitory response to an 11b-HSD2 inhibitor glycyrrhetinic acid (GA). Taken together, MCF-7 that overexpresses type 2 but not type 1 enzyme is chosen for cellular 11beta-HSD2 assay, and our results show that a nonradioactive HTRF assay is applicable for type 2 as well as type 1 isozyme.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app