Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Basal ganglia surface morphology and the effects of stimulant medications in youth with attention deficit hyperactivity disorder.

OBJECTIVE: Disturbances in the basal ganglia portions of cortico-striato-thalamo-cortical circuits likely contribute to the symptoms of attention deficit hyperactivity disorder (ADHD). The authors examined the morphologic features of the basal ganglia nuclei (caudate, putamen, and globus pallidus) in children with ADHD.

METHOD: A total of 104 individuals (combined-type ADHD patients: N=47; healthy comparison subjects: N=57), aged 7 to 18 years, were examined in a cross-sectional case-control study using anatomical magnetic resonance imaging. Conventional volumes and the surface morphology for the basal ganglia were measured.

RESULTS: Overall volumes were significantly smaller only in the putamen. Analysis of the morphological surfaces revealed significant inward deformations in each of the three nuclei, localized primarily in portions of these nuclei that are components of limbic, associative, and sensorimotor pathways in the cortico-striato-thalamo-cortical circuits in which these nuclei reside. The more prominent these inward deformations were in the patient group, the more severe the ADHD symptoms. Surface analyses also demonstrated significant outward deformations of all basal ganglia nuclei in the ADHD children treated with stimulants compared with those ADHD youth who were untreated. These stimulant-associated enlargements were in locations similar to the reduced volumes detected in the ADHD group relative to the comparison group. The outward deformations associated with stimulant medications attenuated the statistical effects of the primary group comparisons.

CONCLUSIONS: These findings potentially represent evidence of anatomical dysregulation in the circuitry of the basal ganglia in children with ADHD and suggest that stimulants may normalize morphological features of the basal ganglia in children with the disorder.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app