Transcriptional modulation of micro-RNA in human cells differing in radiation sensitivity

M Ahmad Chaudhry, Bridget Kreger, Romaica A Omaruddin
International Journal of Radiation Biology 2010, 86 (7): 569-83

PURPOSE: The molecular basis of gene regulation in cells exposed to ionising radiation is not fully understood. Gene regulation occurs at the transcriptional and post-transcriptional levels. Recent studies have suggested that micro-RNA (miRNA) plays a significant role at the post-transcriptional gene regulation. miRNA are a recently identified class of RNA molecules 18-24 nucleotides in length that have been shown to negatively regulate the stability or translation of target messenger RNA. We hypothesised that ionising radiation induced stress response is controlled in part by miRNA and that a difference in tumour protein 53 (p53) status corresponds with altered expression in miRNA responses to ionising radiation.

MATERIALS AND METHODS: To test this hypothesis, we investigated the relative expression of several miRNA by quantitative real-time polymerase chain reaction (QPCR) in human cell lines TK6 and WTK1 that differ in p53 status and radiosensitivity after exposure to high and low doses of X-radiation.

RESULTS: The suitability of several endogenous miRNA controls was tested for relative quantification by QPCR. The baseline expression of 21 miRNA targets in TK6 and WTK1 cells indicated a wide range of modulation between the two cell lines without exposure to ionising radiation. Differences in the relative expression of miRNA were observed among the two cell lines after radiation treatment. The expression patterns of many miRNA markedly differed within the same cell line after exposure to either 0.5 Gy or 2 Gy doses of X-rays. The expression of eight miRNA belonging to the lethal-7 (let-7) family, which are negative regulators of the rat sarcoma, RAS oncogene, was upregulated in irradiated TK6 cells but was downregulated in WTK1 cells. Alterations in the myelocytomatosis oncogene, c-MYC induced cluster of miRNA were also observed. The micro RNA, miR-15a and miR-16 were upregulated in 0.5 Gy-irradiated TK6 cells but were downregulated after a 2 Gy dose of X-rays. In contrast miR-15 and miR-16 were repressed in 0.5 Gy-exposed WTK1. The miR-21 was upregulated in 0.5 Gy-treated TK6 cells and its target genes programmed cell death factor 4 (hPDCD4) phosphatase and tensin homolog (hPTEN), and sprouty homolog 2 (hSPRY2) were found to be downregulated in these cells. The miR-21 was downregulated in 2 Gy-irradiated TK6 cells, and all three of its target genes were upregulated in 2 Gy-exposed TK6 cells.

CONCLUSION: Taken together, these results establish the involvement of miRNA in radiation response and may potentially help explain the mechanisms of gene regulation in the cellular response to ionising radiation exposure.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"