Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Neural origin of spontaneous hemodynamic fluctuations in rats under burst-suppression anesthesia condition.

Cerebral Cortex 2011 Februrary
Spontaneous hemodynamic signals fluctuate coherently within many resting-brain functional networks not only in awake humans and lightly anesthetized primates but also in animals under deep anesthesia characterized by burst-suppression electroencephalogram (EEG) activity and unconsciousness. To understand the neural origin of spontaneous hemodynamic fluctuations under such a deep anesthesia state, epidural EEG and cerebral blood flow (CBF) were simultaneously recorded from the bilateral somatosensory cortical regions of rats with isoflurane-induced burst-suppression EEG activity. Strong neurovascular coupling was observed between spontaneous EEG "bursts" and CBF "bumps," both of which were also highly synchronized across the 2 hemispheres. Functional magnetic resonance imaging (fMRI) was used to image spontaneous blood oxygen level-dependent (BOLD) signals under the same anesthesia conditions and showed similar BOLD "bumps" and dependence on anesthesia depth as the CBF signals. The spatiotemporal BOLD correlations indicate a strong but less-specific coherent network covering a wide range of cortical regions. The overall findings reveal that the spontaneous CBF/BOLD fluctuations under unconscious burst-suppression anesthesia conditions originate mainly from underlying neural activity. They provide insights into the neurophysiological basis for the use of BOLD- and CBF-based fMRI signals for noninvasively imaging spontaneous and synchronous brain activity under various brain states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app