Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Complex plaques in the proximal descending aorta: an underestimated embolic source of stroke.

BACKGROUND AND PURPOSE: To investigate the incidence of retrograde flow from complex plaques (> or =4-mm-thick, ulcerated, or superimposed thrombi) of the descending aorta (DAo) and its potential role in embolic stroke.

METHODS: Ninety-four consecutive acute stroke patients with aortic plaques > or =3-mm-thick in transesophageal echocardiography were prospectively included. MRI was performed to localize complex plaques and to measure time-resolved 3-dimensional blood flow within the aorta. Three-dimensional visualization was used to evaluate if diastolic retrograde flow connected plaque location with the outlet of the left subclavian artery, left common carotid artery, or brachiocephalic trunk. Complex DAo plaques were considered an embolic source if retrograde flow reached a supra-aortic vessel that supplied the territory of visible acute and embolic retinal or cerebral infarction.

RESULTS: Only decreasing heart rate was correlated (P<0.02) with increasing flow reversal to the aortic arch. Retrograde flow from complex DAo plaques reached the left subclavian artery in 55 (58.5%), the left common carotid artery in 23 (24.5%), and the brachiocephalic trunk in 13 patients (13.8%). Based on routine diagnostics and MRI of the ascending aorta/aortic arch, stroke etiology was determined in 57 and cryptogenic in 37 patients. Potential embolization from DAo plaques was then identified in 19 of 57 patients (33.3%) with determined and in 9 of 37 patients (24.3%) with cryptogenic stroke.

CONCLUSIONS: Retrograde flow from complex DAo plaques was frequent in both determined and cryptogenic stroke and could explain embolism to all brain territories. These findings suggest that complex DAo plaques should be considered a new source of stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app