Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Sensitization of nanocrystalline TiO2 anchored with pendant catechol functionality using a new tetracyanato ruthenium(II) polypyridyl complex.

We have synthesized a new photoactive ruthenium(II) complex having a pendant catechol functionality (K(2)[Ru(CN)(4)(L)] (1) (L is 4-[2-(4'-methyl-2,2'-bipyridinyl-4-yl)vinyl]benzene-1,2-diol) for studying the dynamics of the interfacial electron transfer between nanoparticulate TiO(2) and the photoexcited states of this Ru(II) complex using femtosecond transient absorption spectroscopy. Steady-state absorption and emission studies revealed that the complex 1 showed a strong solvatochromic behavior in solvents or solvent mixtures of varying polarity. Our steady-state absorption studies further revealed that 1 is bound to TiO(2) surfaces through the catechol functionality, though 1 has two different types of functionalities (catecholate and cyanato) for binding to TiO(2) surfaces. The longer wavelength absorption band tail for 1, bound to TiO(2) through the proposed catecholate functionality, could also be explained on the basis of the DFT calculations. Dynamics of the interfacial electron transfer between 1 and TiO(2) nanoparticles was investigated by studying kinetics at various wavelengths in the visible and near-infrared region. Electron injection to the conduction band of the nanoparticulate TiO(2) was confirmed by detection of the conduction band electron in TiO(2) ([e(-)](TiO(2))(CB)) and cation radical of the adsorbed dye (1(*+)) in real time as monitored by transient absorption spectroscopy. A single exponential and pulse-width limited (<100 fs) electron injection was observed. Back electron transfer dynamics was determined by monitoring the decay kinetics of 1(*+) and [e(-)](TiO(2))(CB). This is the first report on ultrafast ET dynamics on TiO(2) nanoparticle surface using a solvatochromic sensitizer molecule.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app