Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Oscillatory correlates of vibrotactile frequency processing in human working memory.

Previous animal research has revealed neuronal activity underlying short-term retention of vibrotactile stimuli, providing evidence for a parametric representation of stimulus frequency in primate tactile working memory (Romo et al., 1999). Here, we investigated the neural correlates of vibrotactile frequency processing in human working memory, using noninvasive electroencephalography (EEG). Participants judged the frequencies of vibrotactile stimuli delivered to the fingertip in a delayed match-to-sample frequency discrimination task. As expected, vibrotactile stimulation elicited pronounced steady-state evoked potentials, which were source-localized in primary somatosensory cortex. Furthermore, parametric analysis of induced EEG responses revealed that the frequency of stimulation was reflected by systematic modulations of synchronized oscillatory activity in nonprimary cortical areas. Stimulus processing was accompanied by frequency-dependent alpha-band responses (8-12 Hz) over dorsal occipital cortex. The critical new finding was that, throughout the retention interval, the stimulus frequency held in working memory was systematically represented by a modulation in prefrontal beta activity (20-25 Hz), which was source-localized to the inferior frontal gyrus. This modulation in oscillatory activity during stimulus retention was related to successful frequency discrimination, thus reflecting behaviorally relevant information. Together, the results complement previous findings of parametric working memory correlates in nonhuman primates and suggest that the quantitative representation of vibrotactile frequency in sensory memory entails systematic modulations of synchronized neural activity in human prefrontal cortex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app