Effect of collagen hydrolysate on chondrocyte-seeded agarose constructs

Steven H Elder, Ali Borazjani
Bio-medical Materials and Engineering 2009, 19 (6): 409-14
The mechanical properties of engineered cartilage are strongly dependent on collagen content, but the collagen to glycosaminoglycan ratio in engineered cartilage is often much lower than that of the native tissue. Therefore culture medium supplements which increase collagen production by chondrocytes are of interest. It had previously been reported that collagen hydrolysate stimulated type II collagen biosynthesis in short-term, high density monolayer chondrocyte cultures. It was hypothesized that collagen hydrolysate added to the culture medium of three dimensional chondrocyte-agarose constructs would enhance their mechanical properties. Porcine articular chondrocytes were embedded in 2% agarose and cultured for up to 6 weeks with and without 1 mg/ml collagen hydrolysate. The instantaneous compressive modulus and equilibrium compressive modulus were significantly lower in the collagen hydrolysate-treated constructs, consistent with the finding of lower collagen and GAG content. Contrary to our hypothesis, our results indicate that 1 mg/ml collagen hydrolysate may actually inhibit macromolecule biosynthesis and be detrimental to the mechanical properties of long term chondrocyte-agarose constructs.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"