Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Probing a century old prediction one plasmonic particle at a time.

Nano Letters 2010 April 15
In 1908, Gustav Mie solved Maxwell's equations to account for the absorption and scattering of spherical plasmonic particles. Since then much attention has been devoted to the size dependent optical properties of metallic nanoparticles. However, ensemble measurements of colloidal solutions generally only yield the total extinction cross sections of the nanoparticles. Here, we show how Mie's prediction on the size dependence of the surface absorption and scattering can be probed separately for the same gold nanoparticle by using two single particle spectroscopy techniques, (1) dark-field scattering and (2) photothermal imaging, which selectively only measure scattering and absorption, respectively. Combining the optical measurements with correlated scanning electron microscopy furthermore allowed us to measure the size of the spherical gold nanoparticles, which ranged from 43 to 274 nm in diameter. We found that even though the trend predicted by Mie theory is followed well by the experimental data over a large range of nanoparticle diameters, for small size variations changes in scattering and absorption intensities are dominated by factors other than those considered by Mie theory. In particular, spectral shifts of the plasmon resonance due to deviations from a spherical particle shape alone cannot explain the observed variation in absorption and scattering intensities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app