Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Oxytocin signal and social behaviour: comparison among adult and infant oxytocin, oxytocin receptor and CD38 gene knockout mice.

Oxytocin in the hypothalamus is the biological basis of social recognition, trust, love and bonding. Previously, we showed that CD38, a proliferation marker in leukaemia cells, plays an important role in the hypothalamus in the process of oxytocin release in adult mice. Disruption of Cd38 (Cd38 (-/-)) elicited impairment of maternal behaviour and male social recognition in adult mice, similar to the behaviour observed in Oxt and oxytocin receptor (Oxtr) gene knockout (Oxt (-/-) and Oxtr (-/-), respectively) mice. Locomotor activity induced by separation from the dam was higher and the number of ultrasonic vocalisation calls was lower in Cd38 (-/-) than Cd38( +/+) pups. However, these behavioural changes were much milder than those observed in Oxt (-/-) and Oxtr (-/-) mice, indicating less impairment of social behaviour in Cd38 (-/-) pups. These phenotypes appeared to be caused by the high plasma oxytocin levels during development from the neonatal period to 3-week-old juvenile mice. ADP-ribosyl cyclase activity was markedly lower in the knockout mice from birth, suggesting that weaning for mice is a critical time window of plasma oxytocin differentiation. Breastfeeding was an important exogenous source of plasma oxytocin regulation before weaning as a result of the presence of oxytocin in milk and the dam's mammary glands. The dissimilarity between Cd38 (-/-) infant behaviour and those of Oxt (-/-) or Oxtr (-/-) mice can be explained partly by this exogenous source of oxytocin. These results suggest that secretion of oxytocin into the brain in a CD38-dependent manner may play an important role in the development of social behaviour.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app