Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Phospholemman and beta-adrenergic stimulation in the heart.

Phosphorylation at serine 68 of phospholemman (PLM) in response to beta-adrenergic stimulation results in simultaneous inhibition of cardiac Na(+)/Ca(2+) exchanger NCX1 and relief of inhibition of Na(+)-K(+)-ATPase. The role of PLM in mediating beta-adrenergic effects on in vivo cardiac function was investigated with congenic PLM-knockout (KO) mice. Echocardiography showed similar ejection fraction between wild-type (WT) and PLM-KO hearts. Cardiac catheterization demonstrated higher baseline contractility (+dP/dt) but similar relaxation (-dP/dt) in PLM-KO mice. In response to isoproterenol (Iso), maximal +dP/dt was similar but maximal -dP/dt was reduced in PLM-KO mice. Dose-response curves to Iso (0.5-25 ng) for WT and PLM-KO hearts were superimposable. Maximal +dP/dt was reached 1-2 min after Iso addition and declined with time in WT but not PLM-KO hearts. In isolated myocytes paced at 2 Hz. contraction and intracellular Ca(2+) concentration ([Ca(2+)](i)) transient amplitudes and [Na(+)](i) reached maximum 2-4 min after Iso addition, followed by decline in WT but not PLM-KO myocytes. Reducing pacing frequency to 0.5 Hz resulted in much smaller increases in [Na(+)](i) and no decline in contraction and [Ca(2+)](i) transient amplitudes with time in Iso-stimulated WT and PLM-KO myocytes. Although baseline Na(+)-K(+)-ATPase current was 41% higher in PLM-KO myocytes because of increased alpha(1)- but not alpha(2)-subunit activity, resting [Na(+)](i) was similar between quiescent WT and PLM-KO myocytes. Iso increased alpha(1)-subunit current (I(alpha1)) by 73% in WT but had no effect in PLM-KO myocytes. Iso did not affect alpha(2)-subunit current (I(alpha2)) in WT and PLM-KO myocytes. In both WT and NCX1-KO hearts, PLM coimmunoprecipitated with Na(+)-K(+)-ATPase alpha(1)- and alpha(2)-subunits, indicating that association of PLM with Na(+)-K(+)-ATPase did not require NCX1. We conclude that under stressful conditions in which [Na(+)](i) was high, beta-adrenergic agonist-mediated phosphorylation of PLM resulted in time-dependent reduction in inotropy due to relief of inhibition of Na(+)-K(+)-ATPase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app