Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Pulsation and stabilization: contractile forces that underlie morphogenesis.

Embryonic development involves global changes in tissue shape and architecture that are driven by cell shape changes and rearrangements within cohesive cell sheets. Morphogenetic changes at the cell and tissue level require that cells generate forces and that these forces are transmitted between the cells of a coherent tissue. Contractile forces generated by the actin-myosin cytoskeleton are critical for morphogenesis, but the cellular and molecular mechanisms of contraction have been elusive for many cell shape changes and movements. Recent studies that have combined live imaging with computational and biophysical approaches have provided new insights into how contractile forces are generated and coordinated between cells and tissues. In this review, we discuss our current understanding of the mechanical forces that shape cells, tissues, and embryos, emphasizing the different modes of actomyosin contraction that generate various temporal and spatial patterns of force generation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app