Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

All leg joints contribute to quiet human stance: a mechanical analysis.

Journal of Biomechanics 2009 December 12
According to the state of the art model (single inverted pendulum) the regulation of quiet human stance seems to be dominated by ankle joint actions. Recent findings substantiated both in-phase and anti-phase fluctuations of ankle and hip joint kinematics can be identified in quiet human stance. Thus, we explored in an experimental study to what extent all three leg joints actually contribute to the balancing problem of quiet human stance. We also aimed at distinguishing kinematic from torque contributions. Thereto, we directly measured ankle, knee, and hip joint kinematics with high spatial resolution and ground reaction forces. Then, we calculated the six respective joint torques and, additionally, the centre of mass kinematics. We searched for high cross-correlations between all these mechanical variables. Beyond confirming correlated anti-phase kinematics of ankle and hip, the main results are: (i) ankle and knee joint fluctuate tightly (torque) coupled and (ii) the bi-articular muscles of the leg are well suited to fulfil the requirements of fluctuations around static equilibrium. Additionally, we (iii) identified high-frequency oscillations of the shank between about 4 and 8 Hz and (iv) discriminated potentially passive and active joint torque contributions. These results demonstrate that all leg joints contribute actively and concertedly to quiet human stance, even in the undisturbed case. Moreover, they substantiate the single inverted pendulum paradigm to be an invalid model for quiet human stance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app