Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects.

Electrophoresis 2009 September
This study reports improved electrokinetically driven microfluidic T-mixers to enhance their mixing efficiency. Enhancement of electrokinetic microfluidic T-mixers is achieved using (i) an active approach of utilizing a pulsating EOF, and (ii) a passive approach of using the channel geometry effect with patterned blocks. PDMS-based electrokinetic T-mixers of different designs were fabricated. Experimental measurements were carried out using Rhodamine B to examine the mixing performance and the micro-particle image velocimetry technique to characterize the electrokinetic flow velocity field. Scaling analysis provides an effective frequency range of applied AC electric field. Results show that for a T-mixer of 10 mm mixing length, utilizing frequency modulated electric field and channel geometry effects can increase the mixing efficiency from 50 to 90%. In addition, numerical simulations were performed to analyze the mixing process in the electrokinetic T-mixers with various designs. The simulation results were compared with the experimental data, and reasonable agreement was found.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app