Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Induction of Treg by monocyte-derived DC modulated by vitamin D3 or dexamethasone: differential role for PD-L1.

Specific therapy with modulated DC may restore immunological tolerance, thereby obviating the need for chronic immunosuppression in transplantation or autoimmunity. In this study we compared the tolerizing capacity of dexamethasone (Dex)- and 1 alpha,25-dihydroxyvitamin D3 (VD3)-modulated DC. Treatment of monocytes with either VD3 or Dex resulted in DC with stable, semi-mature phenotypes compared with standard DC, with intermediate levels of co-stimulatory and MHC class II molecules, which remained unaltered after subsequent pro-inflammatory stimulation. IL-12p70 secretion was lost by VD3- and Dex-DC, whereas IL-10 secretion was unaffected. VD3-DC distinctly produced large amounts of TNF-alpha. Both VD3- and Dex-DC possessed the capacity to convert CD4 T cells into IL-10-secreting Treg potently suppressing the proliferation of responder T cells. However, only Treg induced by VD3-DC exhibited antigen specificity. VD3-, but not Dex-, DC expressed significant high levels of PD-L1 (programmed death-1 ligand), upon activation. Blockade of PD-L1 during priming redirected T cells to produce IFN-gamma instead of IL-10 and abolished acquisition of regulatory capacity. Our findings demonstrate that both VD3- and Dex-DC possess durable but differential tolerogenic features, acting via different mechanisms. Both are potentially useful to specifically down-regulate unwanted immune responses and induce immune tolerance. These modulated DC appear suitable as adjuvant in antigen-specific clinical vaccination intervention strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app