Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Selective potentiation of crossed vs. uncrossed inputs from lateral geniculate nucleus to visual cortex by the basal forebrain: potential facilitation of rodent binocularity.

Neuroscience Letters 2009 October 3
Cholinergic projections originating in the basal forebrain (BF) play important roles in the heterosynaptic facilitation of synaptic strength in various sensory cortices, including the primary visual cortex (V1). Here, using urethane-anesthetized rats, we find that pairing burst stimulation of the BF with single pulse stimulation of the lateral geniculate nucleus (LGN) does not consistently increase field postsynaptic potentials (fPSPs) in V1 elicited by ipsilateral LGN stimulation. However, longer latency fPSPs recorded in V1 in response to stimulation of the contralateral LGN, reflecting crossed, polysynaptic inputs, show significant potentiation when paired with preceding BF stimulation. This synaptic enhancement requires relatively short time intervals between paired BF burst and LGN pulse stimulation (40 ms) and is abolished by systemic or local V1 muscarinic receptor blockade (scopolamine), while systemic nicotinic receptor blockade (mecamylamine) is ineffective. Together, these data provide evidence for a differential capacity for cholinergic/muscarinic-dependent plasticity induction among different signals in V1, with inputs reaching V1 from the contralateral LGN exhibiting potentiation in the face of stable strength in ipsilateral LGN-V1 projections. This preferential readiness for potentiation in crossed fiber systems could serve to amplify binocular responses in V1 elicited by synchronized excitation of ipsi- and contralateral LGN neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app