REVIEW
Add like
Add dislike
Add to saved papers

Pharmacokinetics and dosage adjustment in patients with renal dysfunction.

INTRODUCTION: Chronic kidney disease is a common, progressive illness that is becoming a global public health problem. In patients with kidney dysfunction, the renal excretion of parent drug and/or its metabolites will be impaired, leading to their excessive accumulation in the body. In addition, the plasma protein binding of drugs may be significantly reduced, which in turn could influence the pharmacokinetic processes of distribution and elimination. The activity of several drug-metabolizing enzymes and drug transporters has been shown to be impaired in chronic renal failure. In patients with end-stage renal disease, dialysis techniques such as hemodialysis and continuous ambulatory peritoneal dialysis may remove drugs from the body, necessitating dosage adjustment.

METHODS: Inappropriate dosing in patients with renal dysfunction can cause toxicity or ineffective therapy. Therefore, the normal dosage regimen of a drug may have to be adjusted in a patient with renal dysfunction. Dosage adjustment is based on the remaining kidney function, most often estimated on the basis of the patient's glomerular filtration rate (GFR) estimated by the Cockroft-Gault formula. Net renal excretion of drug is a combination of three processes: glomerular filtration, tubular secretion and tubular reabsorption. Therefore, dosage adjustment based on GFR may not always be appropriate and a re-evaluation of markers of renal function may be required.

DISCUSSION: According to EMEA and FDA guidelines, a pharmacokinetic study should be carried out during the development phase of a new drug that is likely to be used in patients with renal dysfunction and whose pharmacokinetics are likely to be significantly altered in these patients. This study should be carried out in carefully selected subjects with varying degrees of renal dysfunction. In addition to this two-stage pharmacokinetic approach, a population PK/PD study in patients participating in phase II/phase III clinical trials can also be used to assess the impact of renal dysfunction on the drug's pharmacokinetics and pharmacodynamics.

CONCLUSION: In conclusion, renal dysfunction affects more that just the renal handling of drugs and/or active drug metabolites. Even when the dosage adjustment recommended for patients with renal dysfunction are carefully followed, adverse drug reactions remain common.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app