Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Knockdown of Chk1 sensitizes human colon carcinoma HCT116 cells in a p53-dependent manner to lidamycin through abrogation of a G2/M checkpoint and induction of apoptosis.

Recent advances in cell cycle regulation have led to a suggestion of therapeutically targeting cell cycle checkpoint pathways in cancer cells to increase the toxicity of DNA-damaging agents. In this study, we investigate whether knockdowns of checkpoint kinases Chk1 and Chk2 by RNA interfering potentiate the cytotoxicity and abrogate G(2)/M checkpoint induced by DNA-damaging agent lidamycin (LDM) in HCT116 cells with different p53 status. Our results showed that Chk1 knockdown enhanced the cytotoxicity of LDM through abrogating G(2)/M arrest and increasing apoptosis to a greater extent in HCT116 p53(-/-) cells than in p53(wt) cells. Abrogation of LDM-induced G(2)/M arrest by Chk1 knockdown was associated with reducing the inactivated phosphorylations of Cdc25C and Cdc2. LDM-induced gamma-H2AX was increased in cells with Chk1 knockdown, indicating that DNA double-strand breaks (DSBs) were enhanced. Furthermore, knockdown of Chk1 also increased LDM-mediated apoptotic cell death in p53 knockout cells with activation of caspase-2 and caspase-3. On the contrary, knockdown of Chk2 had no impact on G(2)/M arrest or apoptosis induced by LDM. Moreover, dual knockdown of Chk1 and Chk2 failed to achieve better efficacy than Chk1 alone. Taken together, we suggest that Chk1 is a potential therapeutic target to sensitize human p53 deficient cancer cells to LDM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app