Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The homocysteine-inducible endoplasmic reticulum stress protein counteracts calcium store depletion and induction of CCAAT enhancer-binding protein homologous protein in a neurotoxin model of Parkinson disease.

The endoplasmic reticulum (ER) is a key organelle regulating intracellular Ca(2+) homeostasis. Oxidants and mitochondria-derived free radicals can target ER-based Ca(2+) regulatory proteins and cause uncontrolled Ca(2+) release that may contribute to protracted ER stress and apoptosis. Several ER stress proteins have been suggested to counteract the deregulation of ER Ca(2+) homeostasis and ER stress. Here we showed that knockdown of Herp, an ubiquitin-like domain containing ER stress protein, renders PC12 and MN9D cells vulnerable to 1-methyl-4-phenylpyridinium-induced cytotoxic cell death by a mechanism involving up-regulation of CHOP expression and ER Ca(2+) depletion. Conversely, Herp overexpression confers protection by blocking 1-methyl-4-phenylpyridinium-induced CHOP up-regulation, ER Ca(2+) store depletion, and mitochondrial Ca(2+) accumulation in a manner dependent on a functional ubiquitin-proteasomal protein degradation pathway. Deletion of the ubiquitin-like domain of Herp or treatment with a proteasomal inhibitor abolished the central function of Herp in ER Ca(2+) homeostasis. Thus, elucidating the underlying molecular mechanism(s) whereby Herp counteracts Ca(2+) disturbances will provide insights into the molecular cascade of cell death in dopaminergic neurons and may uncover novel therapeutic strategies to prevent and ameliorate Parkinson disease progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app