Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Simultaneous determination of airborne carbonyls and aromatic hydrocarbons using mixed sorbent collection and thermal desorption-gas chromatography/mass spectrometric analysis.

Volatile organic chemicals (VOC) such as aromatics and carbonyls are ubiquitous, and have environmental and health significance. This work presents a novel analytical method for simultaneously monitoring airborne carbonyls compounds and aromatic hydrocarbons. Carbonyls were collected onto an adsorbent (Tenax TA, coated with pentafluorophenyl hydrazine (PFPH)) that reacted with carbonyl groups to form thermo-stable derivatives that are suitable for subsequent analysis by thermal-desorption and GC/MS. Aromatic hydrocarbons were collected onto Tenax TA that was packed in the same sampling tube, and analyzed using the same method as carbonyls. Six carbonyls (formaldehyde, acetaldehyde, benzaldehyde, acetone, methyl ethyl ketone and methyl isobutyl ketone) and five aromatics (benzene, toluene, ethylbenzene, xylenes and styrene) were evaluated following standard test protocols. Calibration ranges were 30-200 ng per tube for most test chemicals, and 200-1000 ng per tube for formaldehyde. The analytical precision was 7% or better, and the collection efficiency, tested using a static sampling bag, was between 94 and 98%. PFPH-coated Tenax TA (for collecting carbonyls) needs to be placed in the front section of the tube, and Tenax TA in the back section (for collecting aromatics). The method detection limits of the current method ranged between 0.2 and 25 ng per tube, which corresponded to sub- to 17.2 ppbv (for formaldehyde), based on a typical 6 l sample from a sampling rate of 25 ml/min. Samples were stable for at least ten days under ambient conditions. The proposed method was also tested in the field and proved satisfactory. The proposed method is simple, feasible and has an acceptable accuracy and precision. It can thus be adopted as a reference method for making relevant measurements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app