Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.

We present the design and fabrication of a new microfluidic device in which the dielectrophoresis and magnetophoresis phenomena were used for the separation of the superparamagnetic microbeads of different sizes. By exploiting the fact that two different particles can exhibit different dielectrophoretic force-frequency spectra, we utilize this device to perform multiplex detection from a single sample solution. We found the transition frequency range for 1, 2.8, and 4.5 microm magnetic beads using our device. Bead-based analysis revealed that a high separation efficiency ( approximately 90%) could be obtained from a single sample solution containing both 4.5 and 2.8 microm beads. The average flow velocity of the beads was maintained at 9.8 mm/s, enabling fast analysis with a smaller amount of reagents. The magnetic field distribution on the beads and the bead flow at the channel cross section for different dielectrophoretic conditions was obtained using CFD-ACE(+) simulation. Issues relating to the fabrication and operation of the device are discussed in detail. Finally, we demonstrated the feasibility of parallel detection/trapping of different beads on the same chip. This separation approach offers the performance of multiplex analysis in lab-on-a-chip devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app