Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Neurochemical and morphological phenotypes of vagal afferent neurons innervating the adult mouse jejunum.

Whilst much is known about the function and influence of vagal afferents on the mammalian upper gastrointestinal tract, the phenotypes of the different types of vagal afferent neurons innervating the jejunum is unknown. We have previously shown that spinal afferents supplying the jejunum are predominantly medium-sized sensory neurons that express specific combinations of transient receptor potential vanilloid type 1 (TRPV1), neuronal nitric oxide synthase (NOS) and calcitonin-gene related peptide (CGRP) and that they lack binding for isolectin B4 (IB4). This study aimed to identify the chemical phenotypes and somal sizes of jejunal afferent neurons in the mouse vagal ganglion. Jejunal vagal afferents were identified by retrograde labelling with sub-serosal injections of cholera toxin B (CTB) into the jejunal wall and assessed for IB4-binding, TRPV1-, NOS- and CGRP-immunoreactivities using fluorescent microscopy. Almost all (99%) of CTB-labelled vagal afferent neurons were small- and medium-sized sensory cells. Most (81%) jejunal vagal afferents bound IB4 but fewer (32%) expressed TRPV1. A quarter (25%) of those that bound IB4 co-expressed TRPV1-immunoreactivity whilst 77% of TRPV1-expressing jejunal vagal afferent neurons bound IB4. NOS (0%) and CGRP (0%) expression was absent from all CTB-labelled cells examined. In conclusion, vagal afferents innervating the jejunum differ in their expression of IB4, TRPV1, CGRP and NOS from their spinal counterparts, suggesting that the peripheral endings for extrinsic sensory neurons terminating within the enteric nervous system can be identified selectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app