Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Photoinduced nonadiabatic dynamics of 9H-guanine.

Surface-hopping simulations are used to study the nonradiative relaxation of 9H-guanine. Two distinct S(1)-->S(0) (pipi*-->gs) decay channels, both of which pass through a conical intersection (CI), are found to be responsible for the experimentally observed double-decay behavior [schematic diagram: see text].The photoinduced nonadiabatic decay dynamics of 9H-guanine is investigated by surface-hopping calculations at the semiempirical OM2/MRCI level of theory. Following excitation, fast internal conversion from the pipi* (L(a)) excited state to the ground state is observed within 800 fs. Relaxation proceeds through two distinct S(1)-->S(0) pathways. The first channel goes through a conical intersection with pronounced out-of-plane displacement of the C2 atom and yields ultrafast decay with a time constant of 190 fs. The second channel evolves through a conical intersection with strong out-of-plane distortion of the amino group and leads to slower decay with a lifetime of 400 fs. These decay mechanisms and the computed decay times are consistent with the available experimental evidence and previous theoretical studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app