Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Autophagy and the functional roles of Atg5 and beclin-1 in the anti-tumor effects of 3beta androstene 17alpha diol neuro-steroid on malignant glioma cells.

In this study, we demonstrate that the anti-tumor activity of the neuro-steroid, 3beta androstene 17alpha diol (17alpha-AED) on malignant glioma cells is mediated by the induction of autophagy. 17alpha-AED can inhibit the proliferation an induce cell death of multiple, unrelated gliomas with an IC(50) between 8 and 25muM. 17alpha-AED treatment induced the formation of autophagosomes and acidic vesicular organelles in human malignant gliomas which was blocked by bafilomycin A1 or 3-methyladenine. Cleavage of microtubule-associated protein-light chain 3 (LC3), an essential step in autophagosome formation, was detected in human malignant glioma cells exposed to 17alpha-AED. In 17alpha-AED treated T98G glioma cells there was an increase in the autophagy related proteins Atg5 and beclin-1. Silencing of ATG5 or beclin-1 with small interfering RNA significantly reduced the incidence of autophagy in 17alpha-AED treated malignant gliomas and attenuated the cytotoxic effects of the neuro-steroid indicating that the induction of autophagy mediates the anti-glioma activity of 17alpha-AED rather than serving as a cyto-protective response. These results demonstrate that 17alpha-AED possesses significant anti-glioma activity when used at pharmacologically relevant concentrations in vitro and the cytotoxic effects are resultant from the induction of autophagy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app