Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ventral premotor to primary motor cortical interactions during object-driven grasp in humans.

Interactions between the ventral premotor (PMv) and the primary motor cortex (M1) are crucial for transforming an object's geometrical properties, such as its size and shape, into a motor command suitable for grasp of the object. Recently, we showed that PMv interacts with M1 in a specific fashion, depending on the hand posture. However, the functional connectivity between PMv and M1 during the preparation of an actual grasp is still unknown. To address this issue, PMv-M1 interactions were tested while subjects were preparing to grasp different visible objects requiring either a precision grip or a whole hand grasp. A conditioning-test transcranial magnetic stimulation (TMS) paradigm was used: a test stimulus was applied over M1 either in isolation or after a conditioning stimulus delivered, at different delays, over the ipsilateral PMv. Motor evoked potentials (MEPs) were recorded in the first dorsal interosseus and abductor digiti minimi muscles, which show highly differentiated activity according to grasp. While subjects prepared to grasp, delivering a conditioning PMv pulse 6 or 8msec before a test pulse over M1 strikingly facilitated MEPs in the specific muscles that were used in the upcoming grasp. This degree of facilitation correlated with the amount of muscle activity used later in the trial to grasp the objects. The present results demonstrate that, during grasp preparation, the PMv-M1 interactions are muscle-specific. PMv appears to process the object geometrical properties relevant for the upcoming grasp, and transmits this information to M1, which in turn generates a motor command appropriate for the grasp. We also reveal that the grasp-specific facilitation resulting from PMv-M1 interactions is differently related to the upcoming grasp muscle activity than is that from paired-pulse stimulation over M1, suggesting that these two TMS paradigms assess the excitability of cortico-cortical pathways devoted to the control of grasp at two different levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app