Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Induction of T helper 3 regulatory cells by dendritic cells infected with porcine reproductive and respiratory syndrome virus.

Virology 2009 May 11
Delayed development of virus-specific immune response has been observed in pigs infected with the porcine reproductive and respiratory syndrome virus (PRRSV). Several studies support the hypothesis that the PRRSV is capable of modulating porcine immune system, but the mechanisms involved are yet to be defined. In this study, we evaluated the induction of T regulatory cells by PRRSV-infected dendritic cells (DCs). Our results showed that PRRSV-infected DCs significantly increased Foxp3(+)CD25(+) T cells, an effect that was reversible by IFN-alpha treatment, and this outcome was reproducible using two distinct PRRSV strains. Analysis of the expressed cytokines suggested that the induction of Foxp3(+)CD25(+) T cells is dependent on TGF-beta but not IL-10. In addition, a significant up-regulation of Foxp3 mRNA, but not TBX21 or GATA3, was detected. Importantly, our results showed that the induced Foxp3(+)CD25(+) T cells were able to suppress the proliferation of PHA-stimulated PBMCs. The T cells induced by the PRRSV-infected DCs fit the Foxp3(+)CD25(+) T helper 3 (Th3) regulatory cell phenotype described in the literature. The induction of this cell phenotype depended, at least in part, on PRRSV viability because IFN-alpha treatment or virus inactivation reversed these effects. In conclusion, this data supports the hypothesis that the PRRSV succeeds to establish and replicate in porcine cells early post-infection, in part, by inducing Th3 regulatory cells as a mechanism of modulating the porcine immune system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app