Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mutations in amyloid precursor protein affect its interactions with presenilin/gamma-secretase.

Alzheimer's disease is characterized by accumulation of toxic beta-amyloid (Abeta) in the brain and neuronal death. Several mutations in presenilin (PS1) and beta-amyloid precursor protein (APP) associate with an increased Abeta(42/40) ratio. Abeta(42), a highly fibrillogenic species, is believed to drive Abeta aggregation. Factors shifting gamma-secretase cleavage of APP to produce Abeta(42) are unclear. We investigate the molecular mechanism underlying altered Abeta(42/40) ratios associated with APP mutations at codon 716 and 717. Using FRET-based fluorescence lifetime imaging to monitor APP-PS1 interactions, we show that I716F and V717I APP mutations increase the proportion of interacting molecules earlier in the secretory pathway, resulting in an increase in Abeta generation. A PS1 conformation assay reveals that, in the presence of mutant APP, PS1 adopts a conformation reminiscent of FAD-associated PS1 mutations, thus influencing APP binding to PS1/gamma-secretase. Mutant APP affects both intracellular location and efficiency of APP-PS1 interactions, thereby changing the Abeta(42/40) ratio.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app