Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cardiovascular regulation during apnea in elite divers.

Hypertension 2009 April
Involuntary apnea during sleep elicits sustained arterial hypertension through sympathetic activation; however, little is known about voluntary apnea, particularly in elite athletes. Their physiological adjustments are largely unknown. We measured blood pressure, heart rate, hemoglobin oxygen saturation, muscle sympathetic nerve activity, and vascular resistance before and during maximal end-inspiratory breath holds in 20 elite divers and in 15 matched control subjects. At baseline, arterial pressure and heart rate were similar in both groups. Maximal apnea time was longer in divers (1.7+/-0.4 versus 3.9+/-1.1 minutes; P<0.0001), and it was accompanied by marked oxygen desaturation (97.6+/-0.7% versus 77.6+/-13.9%; P<0.0001). At the end of apnea, divers showed a >5-fold greater muscle sympathetic nerve activity increase (P<0.01) with a massively increased pressor response compared with control subjects (9+/-5 versus 32+/-15 mm Hg; P<0.001). Vascular resistance increased in both groups, but more so in divers (79+/-46% versus 140+/-82%; P<0.01). Heart rate did not change in either group. The rise in muscle sympathetic nerve activity correlated with oxygen desaturation (r(2)=0.26; P<0.01) and with the increase in mean arterial pressure (r(2)=0.40; P<0.0001). In elite divers, breath holds for several minutes result in an excessive chemoreflex activation of sympathetic vasoconstrictor activity. Extensive sympathetically mediated peripheral vasoconstriction may help to maintain adequate oxygen supply to vital organs under asphyxic conditions that untrained subjects are not able to tolerate voluntarily. Our results are relevant to conditions featuring periodic apnea.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app