COMPARATIVE STUDY
JOURNAL ARTICLE

Variations in archaeal and bacterial diversity associated with the sulfate-methane transition zone in continental margin sediments (Santa Barbara Basin, California)

Benjamin K Harrison, Husen Zhang, Will Berelson, Victoria J Orphan
Applied and Environmental Microbiology 2009, 75 (6): 1487-99
19139232
The sulfate-methane transition zone (SMTZ) is a widespread feature of continental margins, representing a diffusion-controlled interface where there is enhanced microbial activity. SMTZ microbial activity is commonly associated with the anaerobic oxidation of methane (AOM), which is carried out by syntrophic associations between sulfate-reducing bacteria and methane-oxidizing archaea. While our understanding of the microorganisms catalyzing AOM has advanced, the diversity and ecological role of the greater microbial assemblage associated with the SMTZ have not been well characterized. In this study, the microbial diversity above, within, and beneath the Santa Barbara Basin SMTZ was described. ANME-1-related archaeal phylotypes appear to be the primary methane oxidizers in the Santa Barbara Basin SMTZ, which was independently supported by exclusive recovery of related methyl coenzyme M reductase genes (mcrA). Sulfate-reducing Deltaproteobacteria phylotypes affiliated with the Desulfobacterales and Desulfosarcina-Desulfococcus clades were also enriched in the SMTZ, as confirmed by analysis of dissimilatory sulfite reductase (dsr) gene diversity. Statistical methods demonstrated that there was a close relationship between the microbial assemblages recovered from the two horizons associated with the geochemically defined SMTZ, which could be distinguished from microbial diversity recovered from the sulfate-replete overlying horizons and methane-rich sediment beneath the transition zone. Comparison of the Santa Barbara Basin SMTZ microbial assemblage to microbial assemblages of methane seeps and other organic matter-rich sedimentary environments suggests that bacterial groups not typically associated with AOM, such as Planctomycetes and candidate division JS1, are additionally enriched within the SMTZ and may represent a common bacterial signature of many SMTZ environments worldwide.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
19139232
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"