Add like
Add dislike
Add to saved papers

Neurological grading, survival, MR imaging, and histological evaluation in the rat brainstem glioma model.

OBJECTIVE: Convection-enhanced delivery using carboplatin in brainstem glioma models was reported to prolong survival. Functional impairment is of additional importance to evaluate the value of local chemotherapy. We established a neurological scoring system for the rat brainstem glioma model.

MATERIAL AND METHODS: In 46 male Fisher rats stereotactically 10(5) F-98 cells were implanted at 1.4-mm lateral to midline and at the lambdoid suture using guided screws. Following 4 days local delivery was performed using Alzet pumps (1 microl/h over 7 days) with either vehicle (5% dextrose) or carboplatin via one or two cannulas, respectively. All rats were subsequently tested neurologically using a specified neurological score. In 38 animals survival time was recorded. Representative MR imaging were acquired in eight rats, respectively, at day 12 after implantation. HE staining was used to evaluate tumor extension.

RESULTS: Neurological scoring showed significantly higher impairment in the high dose carboplatin group during the treatment period. Survival was significantly prolonged compared to control animals in the high dose carboplatin-one cannula group as well as in both low dose carboplatin groups (18.6 +/- 3 versus 26.3 +/- 9, 22.8 +/- 2, 23.6 +/- 2 days; p < 0.05). Overall neurological grading correlated with survival time. MR imaging showed a focal contrast enhancing mass in the pontine brainstem, which was less exaggerated after local chemotherapy. Histological slices visualized decreased cellular density in treatment animals versus controls.

CONCLUSION: Local chemotherapy in the brainstem glioma model showed significant efficacy for histological changes and survival. Our neurological grading enables quantification of drug and tumor-related morbidity as an important factor for functional performance during therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app