JOURNAL ARTICLE

Seed dehydration and the establishment of desiccation tolerance during seed maturation is altered in the Arabidopsis thaliana mutant atem6-1

Alicia J Manfre, Gabrielle A LaHatte, Cynthia R Climer, William R Marcotte
Plant & Cell Physiology 2009, 50 (2): 243-53
19073649
The end of orthodox seed development is typified by a developmentally regulated period of dehydration leading to the loss of bulk water from the entire structure. When dehydration occurs, the cytoplasm condenses and intracellular components become more crowded, providing an environment amenable to numerous undesirable interactions that can lead to protein aggregation, denaturation and organelle-cell membrane fusion. Acquisition of desiccation tolerance, or the ability to withstand these very low water potentials and consequent molecular crowding, has been correlated with the accumulation of various protective compounds including proteins and sugars. Among these are the late embryogenesis abundant (LEA) proteins, a diverse class of highly abundant, heat-stable proteins that accumulate late in embryo maturation coincident with the acquisition of desiccation tolerance. Previous work led us to hypothesize that the protein ATEM6, one of the two Arabidopsis thaliana group 1 LEA proteins, is involved in regulating the rate at which water is lost from the maturing embryo; homozygous atem6-1 mutants display premature dehydration of seeds at the distal end of the silique. Here we demonstrate that rehydrated, mature seeds from atem6-1 mutant plants lose more water during subsequent air drying than wild-type seeds, consistent with a role for ATEM6 protein in water binding/loss during embryo maturation. In addition, and possibly as a result of premature dehydration, mutant seeds along the entire length of the silique acquire desiccation tolerance earlier than their wild-type counterparts. We further demonstrate precocious, and perhaps elevated, expression of the other A. thaliana group 1 LEA protein, ATEM1, that may compensate for loss or ATEM6 expression. However, this observation could also be consistent with acceleration of the entire normal maturation program in atem6-1 mutant embryos. Interestingly, ATEM6 protein does not appear to be required in mature seeds for viability or efficient germination.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
19073649
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"