Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Response of a collagenase-induced tendon injury to treatment with a polysulphated glycosaminoglycan (Adequan).

This study explored the hypothesis that local administration of a polysulphated glycosaminoglycan (PSGAG) in the early phase of healing of a standard collagenase-induced tendon injury in the superficial digital flexor tendon of the rabbit would reduce the degenerative effects of inflammatory mediators and proteases and preserve normal tendon morphology, composition, and biomechanical properties. Histological and ultrastructural changes together with the mechanical properties, dry weight, collagen content, and amount of DNA in healing tissue at the site of the lesion were assessed in treated and untreated animals. In treated lesions 28 days after injury, the normal orientation of tenoblasts and collagen fibrils was well preserved compared with the disorganized scar formation seen in untreated animals. The degree of cellularity was significantly higher in the untreated lesions. At the ultrastructural level the collagen in the healing tissue of the treated animals consisted of a mixture of small diameter, new regenerated fibrils intermingled with well-preserved large diameter, old fibrils, aligned to the long axis of the tendon; in untreated animals small, randomly arranged new fibrils predominated. The diameters of treated tendons had returned to normal, but in untreated animals the injured tendons remained significantly thicker than their controls. The percentage dry weight and collagen contents of treated injured tendons approximated those of control normal tendons, whereas those of untreated tendons were significantly less than those of the control values. The DNA content of injured treated tendons was not significantly different from that of normal contralateral controls, while in the untreated tendons it was significantly higher. There were no significant differences between the normal and the contralateral treated injured tendons in ultimate strength, fatigue strength, stiffness, and maximum absorbed energy. However in the untreated animals, although the tendon diameter was significantly greater, the ultimate strength, fatigue strength, stiffness, and maximum absorbed energy were significantly lower than the contralateral control. These data suggest that polysulphated glycosaminoglycans are effective in restoring the morphological, biochemical, and biomechanical properties of injured soft connective tissues and may be of clinical value in the treatment of acute tendon injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app