Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Zinc chloride stimulates DNA synthesis of mouse embryonic stem cells: involvement of PI3K/Akt, MAPKs, and mTOR.

Although zinc is one of the most important trace elements in the body, the mechanisms underlying zinc-induced cell proliferation have yet to be unraveled. Thus, we investigated the effect of zinc chloride (ZnCl(2)) on mouse embryonic stem (ES) cell proliferation and related signaling pathways. ZnCl(2) (40 microM) significantly increased [(3)H]-thymidine incorporation after 12 h of treatment. At moderate concentrations (> or =4 microM), ZnCl(2) increased cell cycle regulatory protein levels, [(3)H]-thymidine incorporation, and total cell numbers, but higher doses of ZnCl(2) (> or =200 microM) blocked this proliferative effect. ZnCl(2) induced the phosphorylation of Akt, c-Jun N-terminal kinases/stress-activated protein kinases (JNK/SAPK), p44/42 MAPKs, and mammalian target of rapamycin (mTOR) in a time-dependent manner. Pretreatment of LY 294002 (a PI3K inhibitor, 10(-6) M), wortmannin (a PI3K inhibitor, 10(-7) M), or an Akt inhibitor (10(-5) M), which inhibited the activation of JNK/SAPK and p44/42 MAPKs, blocked the ZnCl(2)-induced expression of cyclins and cyclin-dependent kinases (CDKs). Furthermore, pretreatment with PD 98059 (a p44/42 inhibitor, 10(-5) M) or SP 600125 (a JNK inhibitor, 10(-6) M) inhibited ZnCl(2)-induced activation of mTOR, p70S6K, and 4E-BP1. In addition, rapamycin (an mTOR inhibitor, 10(-8) M) blocked the ZnCl(2)-induced increase in [(3)H]-thymidine incorporation and cell cycle regulatory protein expression. In conclusion, ZnCl(2) stimulated ES cell proliferation through the PI3K/Akt, p44/42 MAPKs, JNK/SAPK, and mTOR signal pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app