Add like
Add dislike
Add to saved papers

Evaluation of craniofacial effects during rapid maxillary expansion through combined in vivo/in vitro and finite element studies.

It is well documented in the literature that a contracted maxilla is commonly associated with nasal obstruction. Midpalatal splitting using the rapid maxillary expansion (RME) technique produces separation of the maxillary halves with consequent widening of the nasal cavity. Although clinicians agree about many of the indications for and outcomes of RME, some disagreements persist in relation to the biomechanical effects induced. The present research was based on the parametric analysis of a finite element model (FEM) of a dry human skull with the RME appliance cemented in place in order to evaluate these effects on the overall craniofacial complex with different suture ossification. The behaviour of the FEM was compared with the findings of a clinical study and to an in vitro experiment of the same dry skull. Comparisons refer to the opening pattern and associated displacements of four anatomical points located at the left and right maxilla (MI, UM, EM, CN). It was found that the maxillolacrymal, the frontomaxillary, the nasomaxillary, the transverse midpalatal sutures, and the suture between the maxilla and pterygoid process of the sphenoid bone did not influence the outcome of RME, while the zygomatico-maxillary suture influenced the response of the craniofacial complex to the expansion forces. Moreover, the sagittal suture at the level of the frontal part of the midpalatal suture plays an important role in the degree and manner of maxillary separation. Maximum displacements were observed in the area of maxilla below the hard palate, from the central incisors to second premolars, which dissipated at the frontal and parietal bone and nullified at the occipital bone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app