Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nicotinic receptor stimulation protects nigral dopaminergic neurons in rotenone-induced Parkinson's disease models.

Parkinson's disease (PD) is the second most common neurodegenerative disease and is characterized by dopaminergic (DA) neuronal cell loss in the substantia nigra. Although the entire pathogenesis of PD is still unclear, both environmental and genetic factors contribute to neurodegeneration. Epidemiologic studies show that prevalence of PD is lower in smokers than in nonsmokers. Nicotine, a releaser of dopamine from DA neurons, is one of the candidates of antiparkinson agents in tobacco. To assess the protective effect of nicotine against rotenone-induced DA neuronal cell toxicity, we examined the neuroprotective effects of nicotine in rotenone-induced PD models in vivo and in vitro. We observed that simultaneous subcutaneous administration of nicotine inhibited both motor deficits and DA neuronal cell loss in the substantia nigra of rotenone-treated mice. Next, we analyzed the molecular mechanisms of DA neuroprotective effect of nicotine against rotenone-induced toxicity with primary DA neuronal culture. We found that DA neuroprotective effects of nicotine were inhibited by dihydro-beta-erythroidine (DHbetaE), alpha-bungarotoxin (alphaBuTx), and/or PI3K-Akt/PKB (protein serine/threonine kinase B) inhibitors, demonstrating that rotenone-toxicity on DA neurons are inhibited via activation of alpha4beta2 or alpha7 nAChRs-PI3K-Akt/PKB pathway or pathways. These results suggest that the rotenone mouse model may be useful for assessing candidate antiparkinson agents, and that nAChR (nicotinic acetylcholine receptor) stimulation can protect DA neurons against degeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app