Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Total ginsenosides inhibit the right ventricular hypertrophy induced by monocrotaline in rats.

Ginsenosides have been reported to release nitric oxide (NO) and decrease intracellular free Ca(2+) in cardiovascular system, which play important roles in antihypertrophic effect. This study investigated the potential inhibitory effect of total ginsenosides (TG) on right ventricular hypertrophy induced by monocrotaline (MCT, 60 mg/kg/d) and examined the possible antihypertrophic mechanism in male Sprague Dawley rats. MCT-intoxicated animals were treated with TG (20, 40, 60 mg/kg/d) for 18 d. TG treatment ameliorated MCT-induced elevations in right ventricular peak systolic pressure, right ventricular hypertrophy and the expression of atrial natriuretic peptide; N(G)-nitro-L-arginine-methyl ester (L-NAME), an NO synthase (NOS) inhibitor, had no influence on these inhibitory effects of TG 40 mg/kg/d, and TG at this dose had no any effect on the eNOS mRNA expression, suggesting the limited rule of NO in TG's effects. To further examine the mechanisms of the protection, the expression of calcineurin and its catalytic subunit CnA, as well as extracellular signal-regulated kinase-1 (ERK-1) and mitogen-activated protein kinase (MAPK) Phosphatase-1 (MKP-1) was examined. TG treatment significantly suppressed MCT-induced elevations of these signaling pathways in a dose-dependent manner. In summary, TG is effective in protecting against MCT-induced right ventricle hypertrophy, possibly through lowering pulmonary hypertension. Multiple molecular mechanisms appeared to be involved in this protection, such as the suppression of MCT-activated calcineurin and ERK signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app