Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Investigation of direct vs. indirect involvement of the c-type cytochrome MacA in Fe(III) reduction by Geobacter sulfurreducens.

The electron transfer pathway to Fe(III) reduction in Geobacter sulfurreducens has been hypothesized to consist of a series of c-type cytochromes. Previous genetic studies suggested that the inner membrane-associated, c-type cytochrome, MacA, was a component of the electron transfer chain leading to Fe(III) reduction in the dissimilatory Fe(III)-reducer, G. sulfurreducens. However, investigation of the expression of OmcB, an outer-membrane c-type cytochrome demonstrated previously to be critical for optimal Fe(III) reduction, revealed that both omcB transcript and protein levels were dramatically reduced in the MacA-deficient mutant. Expression of the omcB gene in trans enabled the MacA-deficient mutant to reduce Fe(III) at a rate that was proportional to the level of omcB expression. These results suggest that MacA is not directly involved in electron transfer to Fe(III) and further confirm the importance of OmcB in Fe(III) reduction by G. sulfurreducens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app