Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Increasing the cell number of host tetraploid embryos can improve the production of mice derived from embryonic stem cells.

Tetraploid (4n) embryo complementation assay has shown that embryonic stem (ES) cells alone are capable of supporting embryonic development (ES mouse), allowing the recovery of mouse lines directly from cultured ES cell lines. Although the advantages of this technique are well recognized, it remains inefficient for generating ES mice. In the present study, we investigated the effects of cell number of host 4n embryos on the production of ES mice. Four independent ES cell lines (two general ES cell lines and two nuclear transfer-derived ES cell lines) were used, and each cell line was aggregated with single (1X) to triple (3X) host 4n embryos. We found that birth rate of ES mice using 1X 4n embryos was quite low (0-2%) regardless of cell line, whereas except for one cell line, approximately 6-14% of embryos developed to full term in the case of 3X 4n embryos. Contamination of host 4n cells in ES mice was quite rare, being comparable to that generated using general methods even if they were delivered from 3X 4n host embryos. These results demonstrate that the use of 3X 4n embryos is effective for generating ES mice. Our technique described here will be applicable to any ES cell line, including general ES cell lines used for gene targeting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app