Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Angiotensin II and tumor necrosis factor-alpha synergistically promote monocyte chemoattractant protein-1 expression: roles of NF-kappaB, p38, and reactive oxygen species.

We examined whether ANG II and TNF-alpha cooperatively induce vascular inflammation using the expression of monocyte chemoattractant protein (MCP)-1 as a marker of vascular inflammation. ANG II and TNF-alpha stimulated MCP-1 expression in a synergistic manner in vascular smooth muscle cells. ANG II-induced MCP-1 expression was potently inhibited to a nonstimulated basal level by blockade of the p38-dependent pathway but only partially inhibited by blockade of the NF-kappaB-dependent pathway. In contrast, TNF-alpha-induced MCP-1 expression was potently suppressed by blockade of NF-kappaB activation but only modestly suppressed by blockade of p38 activation. ANG II- and TNF-alpha-induced activation of NF-kappaB- and p38-dependent pathways was partially inhibited by pharmacological inhibitors of ROS production. Furthermore, ANG II- and TNF-alpha-stimulated MCP-1 expression was partially suppressed by ROS inhibitors. We also examined whether endogenous ANG II and TNF-alpha cooperatively promote vascular inflammation in vivo using a wire injury model of the rat femoral artery. Blockade of both ANG II and TNF-alpha further suppressed neointimal formation, macrophage infiltration, and MCP-1 expression in an additive manner compared with blockade of ANG II or TNF-alpha alone. These results suggested that ANG II and TNF-alpha synergistically stimulate MCP-1 expression via the utilization of distinct intracellular signaling pathways (p38- and NFkappaB-dependent pathways) and that these pathways are activated in ROS-dependent and -independent manners. These results also suggest that ANG II and TNF-alpha cooperatively stimulate vascular inflammation in vivo as well as in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app