Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models.

Oncogene 2008 August 8
Genetic alterations in the kinase domain of the epidermal growth factor receptor (EGFR) in non-small cell lung cancer (NSCLC) patients are associated with sensitivity to treatment with small molecule tyrosine kinase inhibitors. Although first-generation reversible, ATP-competitive inhibitors showed encouraging clinical responses in lung adenocarcinoma tumors harboring such EGFR mutations, almost all patients developed resistance to these inhibitors over time. Such resistance to first-generation EGFR inhibitors was frequently linked to an acquired T790M point mutation in the kinase domain of EGFR, or upregulation of signaling pathways downstream of HER3. Overcoming these mechanisms of resistance, as well as primary resistance to reversible EGFR inhibitors driven by a subset of EGFR mutations, will be necessary for development of an effective targeted therapy regimen. Here, we show that BIBW2992, an anilino-quinazoline designed to irreversibly bind EGFR and HER2, potently suppresses the kinase activity of wild-type and activated EGFR and HER2 mutants, including erlotinib-resistant isoforms. Consistent with this activity, BIBW2992 suppresses transformation in isogenic cell-based assays, inhibits survival of cancer cell lines and induces tumor regression in xenograft and transgenic lung cancer models, with superior activity over erlotinib. These findings encourage further testing of BIBW2992 in lung cancer patients harboring EGFR or HER2 oncogenes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app