Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Diabetes-enhanced tumor necrosis factor-alpha production promotes apoptosis and the loss of retinal microvascular cells in type 1 and type 2 models of diabetic retinopathy.

Retinal microvascular cell loss plays a critical role in the pathogenesis of diabetic retinopathy. To examine this further, type 1 streptozotocin-induced diabetic rats and type 2 Zucker diabetic fatty rats were treated by intravitreal injection of the tumor necrosis factor-specific inhibitor pegsunercept, and the impact was measured by analysis of retinal trypsin digests. For type 2 diabetic rats, the number of endothelial cells and pericytes positive for diabetes-enhanced activated caspase-3 decreased by 81% and 86%, respectively, when treated with pegsunercept (P < 0.05). Similarly, the number of diabetes-enhanced terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive endothelial cells and pericytes decreased by 81% and 67% respectively when treated with pegsunercept (P < 0.05). Diabetes-increased activated caspase-3- and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive microvascular cell numbers were both reduced by 81% and 80%, respectively, in pegsunercept-treated type 1 diabetic rats (P < 0.05). Inhibition of tumor necrosis factor reduced type 1 diabetes-enhanced pericyte ghost formation by 87% and the number of type 2 diabetes-enhanced pericyte ghosts by 62% (P < 0.05). Similarly, increased acellular capillary formation caused by type 1 and type 2 diabetes was reduced by 68% and 67%, respectively, when treated with pegsunercept (P < 0.05). These results demonstrate a previously unrecognized role of tumor necrosis factor-alpha in promoting the early pathogenesis of diabetic retinopathy leading to loss of retinal microvascular cells and demonstrate the potential therapeutic benefit of modulating its activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app