COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Biomechanical implications of degenerative joint disease in the apophyseal joints of human thoracic and lumbar vertebrae.

An experimental technique for quantifying load-sharing in cadaveric spines is used to test the hypothesis that degenerative changes in human apophyseal joints are directly related to high levels of compressive load-bearing by these joints. About 36 cadaveric thoraco-lumbar motion segments aged 64-92 years were subjected to a compressive load of 1.5 kN. The distribution of compressive stress was measured in the intervertebral discs using a miniature pressure transducer, and stress measurements were summed over area to give the compressive force resisted by the disc. This was subtracted from the applied 1.5 kN to indicate compressive load-bearing by the apophyseal joints. The cartilage of each apophyseal joint surface was then graded for degree of degeneration. After maceration, each joint surface was scored for degenerative joint disease (DJD) affecting the bone. Results demonstrated that the apophyseal joints resisted 5-96% (mean 45%) of the applied compressive force. A significant positive correlation was demonstrated between age and cartilage degeneration, age and DJD bone score, apophyseal joint load-bearing and bone score, and cartilage score and load-bearing. The latter correlation was strongest for load-bearing above 50%. Ordinal regression showed that the variables describing bone DJD (marginal osteophytes, pitting, bony contour change, and eburnation) were significantly correlated with degree of cartilage degeneration. It is concluded that in elderly individuals apophyseal joint load-bearing above a threshold of 50% is associated with severe degenerative changes in cartilage and bone, and that markers of DJD observed palaeopathologically may be used as predictors of such loadingin life.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app