Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Novel gating and sensitizing mechanism of capsaicin receptor (TRPV1): tonic inhibitory regulation of extracellular sodium through the external protonation sites on TRPV1.

Transient receptor potential V1 (TRPV1) is a nonselective cation channel expressed in nociceptors and activated by capsaicin. TRPV1 detects diverse stimuli, including acid, heat, and endogenous vanilloids, and functions as a molecular integrator of pain perception. Herein we demonstrate a novel regulatory role of extracellular Na(+) ([Na(+)](o)) on TRPV1 function. In human embryonic kidney 293 cells expressing porcine TRPV1, low [Na(+)](o) evoked increases of [Ca(2+)](i) that were suppressed by TRPV1 antagonists and facilitated responses to capsaicin, protons, heat, and an endovanilloid. [Na(+)](o) removal simultaneously elicited a [Ca(2+)](i) increase and outward-rectified current with a reversal potential similar to those of capsaicin. Neutralization of the two acidic residues which confer the proton sensitivity to TRPV1 resulted in a reduction of low [Na(+)](o)-induced responses. In primary culture of porcine sensory neurons, the removal of [Na(+)](o) produced a [Ca(2+)](i) increase and current responses only in the cells responding to capsaicin. Low [Na(+)](o) evoked a [Ca(2+)](i) increase in sensory neurons of wild type mice, but not TRPV1-null mice, and in human embryonic kidney 293 cells expressing human TRPV1. The present results suggest that [Na(+)](o) negatively regulates the gating and polymodal sensitization of the TRPV1 channel. [Na(+)](o) surrounding several proton-sensitive sites on the extracellular side of the pore-forming loop of the TRPV1 channel may play an important role as a brake to suppress the excessive activity of this channel under physiological conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app