Whole-genome expression profiling of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon bioprocesses

Thomas Mock, Manoj Pratim Samanta, Vaughn Iverson, Chris Berthiaume, Matthew Robison, Karie Holtermann, Colleen Durkin, Sandra Splinter Bondurant, Kathryn Richmond, Matthew Rodesch, Toivo Kallas, Edward L Huttlin, Francesco Cerrina, Michael R Sussman, E Virginia Armbrust
Proceedings of the National Academy of Sciences of the United States of America 2008 February 5, 105 (5): 1579-84
Formation of complex inorganic structures is widespread in nature. Diatoms create intricately patterned cell walls of inorganic silicon that are a biomimetic model for design and generation of three-dimensional silica nanostructures. To date, only relatively simple silica structures can be generated in vitro through manipulation of known diatom phosphoproteins (silaffins) and long-chain polyamines. Here, we report the use of genome-wide transcriptome analyses of the marine diatom Thalassiosira pseudonana to identify additional candidate gene products involved in the biological manipulation of silicon. Whole-genome oligonucleotide tiling arrays and tandem mass spectrometry identified transcripts for >8,000 genes, approximately 3,000 of which were not previously described and included noncoding and antisense RNAs. Gene-specific expression profiles detected a set of 75 genes induced only under low concentrations of silicon but not under low concentrations of nitrogen or iron, alkaline pH, or low temperatures. Most of these induced gene products were predicted to contain secretory signals and/or transmembrane domains but displayed no homology to known proteins. Over half of these genes were newly discovered, identified only through the use of tiling arrays. Unexpectedly, a common set of 84 genes were induced by both silicon and iron limitations, suggesting that biological manipulation of silicon may share pathways in common with iron or, alternatively, that iron may serve as a required cofactor for silicon processes. These results provide insights into the transcriptional and translational basis for the biological generation of elaborate silicon nanostructures by these ecologically important microbes.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"