Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

SNPs upstream of the minimal promoter control IL-2 expression and are candidates for the autoimmune disease-susceptibility locus Aod2/Idd3/Eae3.

IL-2, a T-cell growth and differentiation factor, plays an important role in immune homeostasis. Previously, we identified IL2 as a candidate for Aod2, a quantitative trait locus (QTL) controlling susceptibility to autoimmune ovarian dysgenesis (AOD) induced by day 3 neonatal thymectomy. Here, we report the identification of single-nucleotide polymorphisms (SNPs) in a region upstream of the minimal IL2 promoter (-2.8 kb to -300 bp), which distinguish AOD-susceptible A/J and AOD-resistant C57BL/6J (B6/J) mice. Six of the SNPs (-1010 C --> T, -962 C --> T, -926/-925 Delta Delta --> AC, -921 T --> C, -914 T --> C and -674 G --> A) contribute to the enhanced transcriptional activity of the extended B6/J promoter relative to A/J. Importantly, the -1010 SNP resides within a canonical AP-1-binding motif with the C --> T transition at this site abrogating AP-1 binding. Moreover, these SNPs segregate with differential production of IL-2 by CD4(+) T cells as well as susceptibility alleles at Idd3 and Eae3, QTL controlling insulin-dependent diabetes mellitus and experimental allergic encephalomyelitis. These are the first SNPs identified within the extended murine IL2 promoter that control differential IL-2 transcription in CD4(+) T cells, and, as such, they are not only candidates for Aod2, but are also candidates for a shared autoimmune disease-susceptibility locus underlying Idd3 and Eae3.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app