Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Abnormal diffusion of cerebral white matter in early blindness.

Human Brain Mapping 2009 January
Early visual deprivation may lead to both abnormal and plastic changes in the visual and other systems of the brain. Such secondary changes in the gray matter of the early blind have been well studied, but not so well in the cerebral white matter whose subtle changes may be revealed by diffusion tensor imaging. The first purpose of this study is to explore the possible changed white matter regions of the early blind in whole brain manners, using voxel-based analysis (VBA) and tract-based spatial statistics (TBSS) methods. The second purpose is to investigate the changes of diffusion eigenvalues in the abnormal white matter fiber tracts using tractography based group mapping analysis. From VBA of fractional anisotropy (FA) images, the significant changed white matter regions were the geniculocalcarine tract (GCT) and its adjacent regions. This finding was validated by TBSS method. Then we studied the changes of mean diffusivity (MD), FA, primary (lambda(1)) and transverse diffusivities (lambda(23)) in the GCT using tractography based group mapping analysis. We found the early blind had significantly lower FA (P < 0.0001), higher MD (P = 0.001) and lambda(23) (P < 0.0001) in the GCT. This pattern of diffusion changes is similar to findings seen in immaturity or axonal degeneration. Thus, we suggest that transneuronal degeneration and/or immaturity may account for the abnormal diffusion changes in the GCT of the early blind.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app