Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Human cortical activity during streaming without spectral cues suggests a general neural substrate for auditory stream segregation.

Journal of Neuroscience 2007 November 29
The brain continuously disentangles competing sounds, such as two people speaking, and assigns them to distinct streams. Neural mechanisms have been proposed for streaming based on gross spectral differences between sounds, but not for streaming based on other nonspectral features. Here, human listeners were presented with sequences of harmonic complex tones that had identical spectral envelopes, and unresolved spectral fine structure, but one of two fundamental frequencies (f0) and pitches. As the f0 difference between tones increased, listeners perceived the tones as being segregated into two streams (one stream for each f0) and cortical activity measured with functional magnetic resonance imaging and magnetoencephalography increased. This trend was seen in primary cortex of Heschl's gyrus and in surrounding nonprimary areas. The results strongly resemble those for pure tones. Both the present and pure tone results may reflect neuronal forward suppression that diminishes as one or more features of successive sounds become increasingly different. We hypothesize that feature-specific forward suppression subserves streaming based on diverse perceptual cues and results in explicit neural representations for auditory streams within auditory cortex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app