Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells.

Bone marrow-derived mesenchymal stem cells (MSCs) have strong potential in regeneration of musculoskeletal tissues including cartilage and bone. The microenvironment, comprising of scaffold and soluble factors, plays a pivotal role in determining the efficacy of cartilage tissue regeneration from MSCs. In this study, we investigated the effect of a three-dimensional synthetic-biological composite hydrogel scaffold comprised of poly (ethylene glycol) (PEG) and chondroitin sulfate (CS) on chondrogenesis of MSCs. The cells in CS-based bioactive hydrogels aggregated in a fashion which mimicked the mesenchymal condensation and produced cartilaginous tissues with characteristic morphology and basophilic extracellular matrix production. The aggregation of cells resulted in an enhancement of both chondrogenic gene expressions and cartilage specific matrix production compared to control PEG hydrogels containing no CS-moieties. Moreover, a significant down-regulation of type X collagen expression was observed in PEG/CS hydrogels, indicating that CS inhibits the further differentiation of MSCs into hypertrophic chondrocytes. Overall, this study demonstrates the morphogenetic role of bioactive scaffold-mediated microenvironment on temporal pattern of cartilage specific gene expressions and subsequent matrix production during MSC chondrogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app