Add like
Add dislike
Add to saved papers

Increased PDZ-RhoGEF/RhoA/Rho kinase signaling in small mesenteric arteries of angiotensin II-induced hypertensive rats.

BACKGROUND: The phosphorylation of myosin light chain (MLC) maintains the contracted state of vascular smooth muscle. Dephosphorylation results in relaxation and is determined by the activity of myosin light chain phosphatase (MLCP), which is negatively regulated by Rho kinase.

METHODS: We tested whether an increased Rho kinase activity, and hence a decreased contribution of MLCP, results in an increased contractility of small fourth-order mesenteric arteries (MA) during the early onset of angiotensin II (Ang II)-induced hypertension (Ang II-14d).

RESULTS: Calcium sensitivity was similar, but contractile tension in response to [Ca]ex (5 mmol/l) in endothelium-denuded and depolarized MA was greater, in Ang II-14d rats compared to sham-operated normotensive (SHAM) and Ang II-1d. The Rho kinase inhibitor Y-27,632 caused a significantly greater inhibition of the contractile response to various agents (phenylephrine, norepinephrine, U46,619 and K) in MA of Ang II-14d compared to SHAM. Protein expression levels of the GDP/GTP exchange factor PDZ-RhoGEF, which co-immunoprecipitated with RhoA, were increased in MA of Ang II-14d compared to SHAM. RhoA translocation was greater in U46,619 (1 micromol/l)-stimulated MA of Ang II-14d compared to SHAM. Expression levels of Rho kinase beta were higher in MA of Ang II-14d. The MLCP inhibitor calyculin A (100 nmol/l) caused a greater contraction in MA of SHAM compared to Ang II-14d. Phosphorylation of the target subunit of MLCP (MYPT1) was enhanced in U46,619-stimulated MA of Ang II-14d compared to SHAM.

CONCLUSION: This is the first study demonstrating enhanced PDZ-RhoGEF/RhoA/Rho kinase signaling during hypertension at the level of resistance-sized arteries. This enhanced signaling leads to increased MLCP phosphorylation, resulting in vascular hyper-reactivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app